

Global GreenTagEPD Program: Compliant to EN15804+A2 2019

Polyflor Ltd
Homogeneous Flooring
Palettone PUR
Leicester Rd, Whitefield,

Manchester M 45 7NG, United Kingdom

Mandatory Disclosures

EPD type

Cradle to grave A1 to C4 + D

EPD Numbers

PLF:HP5:2022

Issue Date

07 October 2022

Valid Until

07October 2027

Demonstration of Verification

PCR

Standard EN 15804+A2 2019 serves as core Product Category Rules (PCR) [1]. Sub

PCR FC:2022v1 Interior Floorcovering also applies [2].

☑ Internal

LCA Reviewed by Direshni Naiker Ecquate Pty Ltd

LCA Developed by Delwyn Jones, The Evah Institute

EPD Reviewed by David Baggs, Global GreenTag Pty Ltd

Third Party Verifier^a Mathilde Vlieg, Malaika LCT

☑ External

a. Independent external verification of the declaration and data, mandatory for

business-to-consumer communication according to ISO 14025:2010 [2].

This EPD discloses potential environmental outcomes compliant with EN 15804 for Communication

business-to-business communication.

Construction product EPDs may not be comparable if not EN15804 compliant. Comparability Different program EPDs may not be comparable. Comparability is further dependent

on the product category rules and data source used.

LCIA results are relative expressions that do not predict impacts on category Reliability

endpoints, exceeding of thresholds, safety margins or risks.

Owner This EPD is the property of the declared manufacturer.

Further explanatory information is available at info@globalgreentag.com or by **Explanations**

contacting certification1@globalgreentag.com [3].

EPD Program Operator LCA and EPD Producer Declaration Owner Global GreenTag Pty Ltd **Ecquate Pty Ltd** Polyflor Ltd, PO Box 3 PO Box 311 Cannon Hill PO Box 123 Thirroul Radcliffe New Rd Whitefield, QLD 4170 Australia NSW 2515 Australia Manchester M45 7NR United Kingdom Phone: +61 (0)7 33 999 686 Phone: +61 (0)7 5545 0998

Phone: + 0161 767 1111 http://www.globalgreentag.com http://www.evah.com.au https://www.polyflor.com

Program Description

EPD type	Cr	adle	to g	rave	A1 to	C4	+ D	as c	lefine	d by	EN 1	15804	4 [1]						
System boundary		The system boundary with nature includes material and energy acquisition, processing, manufacture, transport, installation, use plus waste arising to end of life.																	
Information Modules				picts decl											vith z	ero	results	. Any	
Model	A	∖ctua	al						Sce	enari	os						Po	tentia	al
Information					Bu	ildind	ı Life	e Cv	cle A	sses	smer	nt					Supplementary		
Stages									Use									fit & lo	
	P	Product Construct Fabric Operation				Е	nd-o	f-Life		beyond system		em							
Modules	A1	A 2	A3	*	A5	<u>8</u>	B2	B3	B 4	B5	98	B7	\overline{c}	2	\mathbb{S}	2	10	D2	D3
Unit Operations Mandatory (M) & Optional (O) Cradle to	Resources	Transport	Manufacture	Transport	Construct	Use	Maintain	Repair	Replace	Refurbish	Energy use	Water use	Demolish	Transport	Process Waste	Disposal	Reuse	Recovery	Recycling
Gate+ Options	Ma	ndate	orv	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	IVIC	iiiuaii	Oi y	M	M	M	M	М	M	M	M	M	М	М	M	M	M	М	0
Scope Depiction	A1-3 A4-5, B1-5, C1-4 & D1. Stages B6-7 and D2-3 have zero flows																		
Stages included						i													
Stages excluded		No stage was excluded but B6-7 and D2-3 have zero flows with zero results																	

Data Sources

Primary Data	Data was collected from primary sources 2019 to 2022 including the manufacturer and suppliers' standards, locations, logistics, technology, market share, management system in accordance with EN ISO 14044:2006, 4.3.2, [4]. All are biochemical-physical allocated none are economically allocated.
A1-A3 Stage inclusions	Operations include all known raw material acquisition, refining and processing plus scrap or material reuse from prior systems; electricity generated from all sources with extraction, refining & transport plus secondary fuel energy and recovery processes. Also, transport to factory gate; manufacture of inputs, ancillary material, product, packaging, maintenance, replacement plus flows leaving at end-of-waste boundary and fates of all flows at end of
Variability	Significant differences of average LCIA results are declared.
Chemicals of Concern	Contains no substances in the European Chemicals Agency "Authorised or Candidate Lists of Substances of Very High Concern (SVHCs)".

Data Quality

Data cut-off & quality criteria complies with EN 15804 [1] The LCA used background data aged <10 years and quality parameters tabled below.

Background	Data Quality	Parameters and Uncer	Parameters and Uncertainty (U)					
Correlation Metric σg		U ±0.01	U ±0.05	U ±0.10	U ±0.20			
Reliability	Reporting	Site Audit	Expert verify	Region	Sector			
	Sample	>66% trend	>25% trend	>10% batch	>5% batch			
Completion	Including	>50%	>25%	>10%	>5%			
Completion	Cut-off	0.01%w/w	0.05%w/w	0.1%w/w	0.5%w/w			
Temporal	Data Age	<3 years	≤5 years	<7.5 years	<10 years			
Temporal	Duration	>3 years	<3 years	<2 years	1 year			
Technology	Typology	Actual	Comparable	In Class	Convention			
Geography	Focus	Process	Line	Plant	Corporate			
	Range	Continent	Nation	Plant	Line			
	Jurisdiction	Representation is Global	Representation is Global. Africa, North America, Europe, Pacific Rim					

System Analysis Scope and Boundaries

Stages A1 to 3 model actual operations. Stage A4 to C4 are model scenarios.

Typical scenarios are assumed to forecast unit operations as described in the next section.

Figure 2. shows included processes in a cradle to grave system boundary to end of life fates to unshown beyond the boundary reuse, recycling or landfill grave.

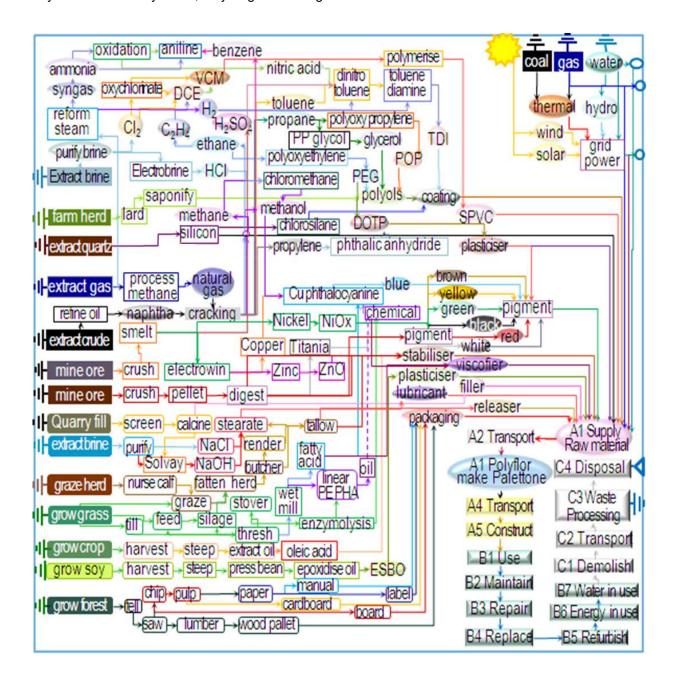


Figure 2. Product Process Flow Chart Completeness

Environmental Impact Terminology

Environmental impacts contributing to risks of social and ecological issues and collapse are tabled below with common names and remedies given for each indicator.

Global warming forcing Climate Change	Greenhouse gases absorb infra-red radiation. This heat reduces thermal energy differentials, from equator to poles, forcing ocean current and wind circulation to blend and regulate climate. Weakly blended "lumpier" weather has more frequent, extreme heat wave, fire-storm, cyclone, rain-storm, flood and blizzard events. Accumulation of carbon dioxide, natural gas methane, nitrous oxides and volatile organic compounds from burning fossil fuels causes global warming. Forest and wilderness growth absorbing air-borne carbon in biomass can drawdown such accumulation. Urgent renewable energy reliance is vital in time to avoid imminent tipping points and the worsening "climate emergency".
Ozone layer depletion	Stratospheric ozone loss weakens the planet's solar shield so more shorter wavelength ultraviolet (UVB) light reaching earth damages plants and increases malignant melanoma and skin cancer in humans and animals. Chlorofluorocarbons, hydrochlorofluorocarbons (HCFC), chlorobromomethane, hydrobromofluorocarbons, carbon tetrachloride, methyl chloroform, methyl bromide and halon gas cause ozone layer loss. To repair the "ozone hole" reliance on ozone-safe refrigerants, aerosols and solvents is essential to avoid further its depletion and enable accumulation of naturally-formed ozone.
Acidification	Acidification reduces soil and waterway pH, impedes nitrogen fixation vital for plant growth and inhibits natural decomposition. It increases rates and incidence of fish kills, forest loss and deterioration of buildings and materials. Chief synthetic causes of "acid rain" are emissions of sulphur and nitrogen oxides, hydrochloric and hydrofluoric acids and ammonia from burning fossil fuels polluting precipitation of rain and snow world-wide.
Eutrophication of terrestrial, freshwater and marine life	Eutrophication from excessively high macronutrient levels added to natural waters promotes excessive plant growth that severely reduces oxygen, water and habitat security for aquatic and terrestrial organisms across related ecosystems. Chief synthetic cause of " <i>algal blooms</i> " is nitrogen (N, NOx, NH ₄) and phosphorus (P, PO ₄ ³⁻) in rain run-off over-fertilised land catchments.
Photochemical ozone creation	Tropospheric photochemical ozone, called " summer smog " near ground level, is created from natural and synthetic compounds in UV sunlight. Low concentration smog damages vegetation and crops. High concentration smog is hazardous to human health. Chief synthetic causes are nitrogen oxides, carbon monoxide and volatile organic compounds (VOC) pollutants. Avoiding reliance on dirtiest coal fuel and volatile chemicals has reduced smog incidence in many areas globally.
Depletion of minerals, metals & water	Abiotic depletion of finite mineral resources increases time, effort and money required to obtain more resources to the point of extinction of naturally viable reserves. This can limit access to available, valuable and scarce elements vital for human-life. The youth movement "extinction rebellion" calls on adults to secure climate, reserves and biodiversity for current and future generations.
Depletion of fossil fuel reserves	Abiotic depletion of resources by consuming finite oil, natural gas, coal and yellowcake fossil fuel reserves leaves current and future generations suffering limited available, accessible, plentiful, essential valuable as well as scarce raw material, medicinal, chemical, feedstock and fuel stock. Approaching "peak oil" acknowledged fossil fuel reserves are finite and the need for decision-makers to act to avoid market instability, insecurity and or oil and gas wars.

Glossary of Terms, Methods and Units

Acronyms, methods and units of impact potentials plus inventory inputs and outputs, are defined below

7 toronymo, methodo dna dmito or impaor j	poteritials pi	ao inventory inputo ana oatputo, are a	Cililea Below
Impact Potentials	Acronym	Description of Methods	Units
Climate Change fossil	GWP ff	GWP fossil fuels [7]	kg CO _{2eq}
Climate Change biogenic	GWP bio	GWP biogenic [7]	kg CO _{2eq}
Climate Change land use	GWP luluc	GWP land use & change [7]	kg CO _{2eq}
Climate Change total	GWP t	Global Warming Potential [7]	kg CO _{2eq}
Stratospheric Ozone Depletion	ODP	Stratospheric Ozone Loss [8]	kg CFC _{11eq}
Photochemical Ozone Creation	POCP	Summer Smog [9]	kg NMOC eq
Acidification Potential	AP	Accumulated Exceedance [10]	mol H ⁺ eq
Eutrophication Freshwater	EP fresh	Excess nutrients freshwater [11]	kg P _{eq}
Eutrophication Marine	EP marine	Excess marine nutrients [11]	kg N eq
Eutrophication Terrestrial	EP _{land}	Excess Terrestrial nutrients [11]	mol N _{eq}
Mineral & Metal Depletion	ADP min	Abiotic Depletion minerals [12]	kg Sb _{eq}
Fossil Fuel Depletion	ADP ff	Abiotic Depletion fossil fuel [13]	MJ ncv
Water Depletion	WDP	Water Deprivation Scarcity [14, 15]	$m^3 {\text{WDP eq}}$
Fresh Water Net	FW	Lake, river, well & town water	m^3
Secondary Material	SM	Post-consumer recycled (PCR)	kg
Secondary Renewable Fuel	RSF	PCR biomass burnt	MJ ncv
Primary Energy Renewable Material	PERM	Biomass retained material	MJ _{ncv}
Primary Energy Renewable Not Feedstock	PERE	biomass fuels burnt	MJ nev
Primary Energy Renewable Total	PERT	Biomass burnt + retained	MJ ncv
Secondary Non-renewable Fuel	NRSF	PCR fossil-fuels burnt	MJ ncv
Primary Energy Non-renewable Material	PENRM	Fossil feedstock retained	MJ nev
Primary Energy Non-renewable Not Feedstock	PENRE	fossil-fuel used or burnt	MJ nev
Primary Energy Non-renewable Total	PENRT	Fossil feedstock & fuel use	MJ _{ncv}
Hazardous Waste Disposed	HWD	Reprocessed to contain risks	kg
Non-hazardous Waste Disposed	NHWD	Municipal landfill facility waste	kg
Radioactive Waste Disposed	RWD	Mostly ex nuclear power stations	kg
Components For Reuse	CRU	Product scrap for reuse as is	kg
Material For Recycling	MFR	Factory scrap to remanufacture	kg
Material For Energy Recovery	MER	Factory scrap use as fuel	kg
Exported Energy Electrical	EEE	Uncommon for building products	MJ ncv
Exported Energy Thermal	EET	Uncommon for building products	MJ _{ncv}

Homogenous Palettone PUR PLF:HP5:2022EP

Product Information

The design application is for predominately dry areas of Hospital, Aged Care, Health Care & Education, Hospitality, Mercantile and Light Industrial buildings.

Brand Name & Code	Palettone PUR	Product Image		
EPD Number	PLF:HP5:2022			
Range Names	Polyflor Homogeneous Flooring			
Factory warranty	15 years			
Practices Reference	https://www.polyflor.com			
Installation Procedure	https://www.polyflor.com			
Manufacturer	Polyflor Ltd			
Manufacturer address	Leicester Rd, Whitefield, Manchester M 45 7NG, United Kingdom			
Site representation	United Kingdom, Europe, Pacific Rim and Australasia			
Application	Commercial			
Function in Building	Flooring			
Practicality	impervious and hygienic fl	eet vinyl ranges provide a continuous, ooring solution which can be confidently h recommended maintenance procedures e products.		
Durability	Polyflor Palettone PUR features a high quality, cross-linked polyurethane reinforcement, UV cured to provide a low-cost, polish free maintenance regime for the lifetime of the flooring.			
Declared unit	1 kg = 0.326 m ² of polyvin	yl chloride coated floor covering		
Functional unit	20 years use of declared 2	2.80kg/m ² floor covering per kilogram		

Product Functional & Technical Performance Information

This section provides manufacturer specifications, additional information and datapoints required to calculate assessment results factoring different mass and periods.

Service	Standard	Parameters	Conformance to standard
Specifications	Homogenous Flooring PUR	https://www.polyflor.com	yes
Туре		Resilient floor covering	Homogeneous sheet vinyl
Performance	ISO 10581	Homogeneous floor covering	\checkmark
Binder		Content Type	Type 1
Emissions	ASTM D5116	Volatile Organic Compound (VOC)	< 0.5mg/m ₂ /hour
Use area	100 40074	Commercial	34
classification	ISO 10874	Light industrial	43
Lifetime [5,6]	ISO 15686	Reference Service Life (RSL)	20 years RSL
Durability	EN 660-2	Wear resistance group	Т
Dimensions	ISO 24341	Roll size W*L	2*20m
Dimensions	ISO 24346	Overall Thickness	2 mm
Reaction to fire	AS ISO 9239-1	Critical radiant flux	≥8kW/m²
Fire		Average specific extinction area	<250 m²/kg
resistance		Smoke Development Rate	≤750 % minutes

Product Components

This section summarises factory components, functions, source nation and % mass share.

In the product content listed below the % mass has a $\pm 5\%$ range and a confidence interval that is 90% certain to contain true population means at any time.

Listing such 90±5% certainty considers normal resource acquisition, supply chain, sedimentation, seasonal, manufacturing and product colour variation over this EPD's 5-year validity period.

This also allows for intellectual property protection whilst ensuring fullest possible transparency.

Function	Component	Cradle	Palettone
Binder	Polyvinyl Chloride	Netherlands	>30<40
Binder	Recycled PVC: Post Industrial	United Kingdom	>25<30
Filler	Limestone	United Kingdom	>20<25
Plasticiser	Dioctyl terphthalate	United Kingdom	>10<15
Whiting	Titania	Czech Republic	>1.0<2.0
Plasticiser	EthylHexylEster	United Kingdom	>1.0<2.0
Stabiliser	Barium Zinc	United Kingdom	>0.1<0.5
Lubricant	Calcium Stearate	Germany	>0.1<0.5
Coating	Polyurethane	United Kingdom	>0.1<0.5
Colour	Pigments	Global	<0.1
Packing			
Carton	Cardboard	United Kingdom	0.02
Pallets	Wood	United Kingdom	0.02
Tape	Polymer	United Kingdom	0.1
Wrap	Plastic	United Kingdom	0.01
Nails	Steel	United Kingdom	0.01

Scenarios for Modules (Units/Functional Unit)

This section defines modelling scenarios. Stages A1 to A3 model actual operations. Stage A4 to D3 model scenarios described as listed below.

A Construction

A4 Transport to Site	Type specified	Amount	Type specified	Amount
Intercity road trucking	2t to 5t vans	220 km	85% Capacity	Full back load
Long distance road trucking	25t semi-trailer	600 km	85% Capacity	Full back load
Continental freight rail	Diesel train	600 km	85% Capacity	Full back load
Global container shipping	Factory to CBD	1,200km	85% Capacity	Full back load
Volume capacity (<1 to ≥1)	Utilisation factor	1	Uncompressed	Un-nested
A5 Installation: Ancillaries	Adhesive	0.025 kg	Edge trim	0.0001 kg
Packing	Cardboard	0.005 kg	Polymer	0.00001 kg
Water & Energy	Town water	0.00 m3	Energy type	0.0 MJ
Waste on site	Trims	0.05 kg	All packaging	As declared kg
Scrap, collection & routes	No recycling	0.0 kg	Energy recovery	0.0 kg
Emissions	Nil to air & water	0.0 kg	All from landfill	In LCA report

B Building

Stage B1 Use of building fabric has zero flows. Stage B2 and B3 scenarios are listed below. Stages B4 Replacement, B5 Refurbishment, B6 Building Operating Energy and B7 Building Operating Water each have zero flows

B2 Maintenance	Type specified	Amount	Type specified	Amount
Maker's specified process	URL declared	Specified	Clean cycle	Weekly
Ancillary material (kg)	Scrubber pads	Negligible	Detergent	0.007kgpa
Washing net water use	Town water	1.95kgpa	To drain 1.90	kgpa
Vacuum cleaning energy	Once weekly	1.62MJpa	Power mix	Local AU mean
B3 Repair	Damaged parts	0.05kg	Worn parts	Same 5%
Maker's specified process	As per website	Specified	Freight to site	As A5
Energy input & source	No excess	0.0MJpa	Packaging	As A5

Stage C1, C2 and C4 scenarios are listed below. Stage C3 Waste Treatment has zero flows.

C End of Life

O LIIG OI LIIC				
C1 Demolition	Type specified	Amount	Type specified	Amount
Operation	Take up worn area	0.40kg	Collection	Separate
Collection process	In site waste	0.40kg	Separate to reuse	0.0kg
C2 Transport	25t truck road	50km	85% capacity	No back load
C4 Disposal	Product specific	0.40kg	Collect separately	0.40kg
Typical Scenario	high wear to landfill	40%	All emissions	mass share
Recovery system	No recycling	0.0 kg	Not for energy	0.0 kg

Stage D1 scenario is listed below. Stage D2 Recovery and D3 Recycling each have zero flows.

D Beyond System Boundary

٦	D1 Reuse	Type specified	Amount	Type specified	Amount
	Typical Scenario	Retain low wear	60%	Reuse in place	0.60kg

Module A1 to D4 Results Cradle to Gate and Construct

Table 1 shows results for Cradle to site A1 to A5. Note 0.0E+00 denote a zero impact or result

Table 1 A1 to B7 Impact & Inventory Results/Functional Unit

Table 1 At to by impact a inventory	results/i diletiona	i Oilit		
Impact Potentials		A1-3	A4	A5
Climate Change fossil		3.4	0.17	0.29
Climate Change biogenic		0.0E+00	0.0E+00	0.0E+00
Climate Change land use		5.6E-04	2.8E-09	3.3E-07
Climate Change total		2.73	0.17	0.29
Stratospheric Ozone Depletion		5.6E-08	2.9E-13	9.9E-09
Photochemical Ozone Creation		1.8E-02	1.0E-05	1.9E-03
Acidification Potential		7.2E-03	9.0E-05	8.0E-04
Eutrophication Freshwater		3.1E-06	2.1E-09	2.3E-05
Eutrophication Marine		1.5E-03	1.7E-05	1.5E-04
Eutrophication Terrestrial		7.3E-03	5.5E-05	1.2E-03
Mineral & Metal Depletion		8.0E-04	1.1E-05	1.8E-05
Fossil Fuel Depletion		3.36	0.20	0.2
Water Depletion		3.3E-02	1.6E-05	2.8E-03
Fresh Water Net		202	0.10	17
Secondary Material		0.37	4.7E-06	2.0E-02
Secondary Renewable Fuel		0.0E+00	0.0E+00	0.0E+00
Primary Energy Renewable Materi	al	0.33	3.7E-03	3.6E-02
Primary Energy Renewable Not Fe	edstock	11.55	5.1E-04	0.10
Primary Energy Renewable Total		11.87	4.2E-03	0.14
Secondary Non-renewable Fuel		0.32	1.1E-03	6.1E-04
Primary Energy Non-renewable Ma	aterial	24.02	0.97	1.58
Primary Energy Non-renewable No	ot Feedstock	46.58	1.64	3.69
Primary Energy Non-renewable To	otal	70.61	2.60	5.26
Hazardous Waste Disposed		1.2E-02	3.3E-04	9.0E-04
Non-hazardous Waste Disposed		3.6E-01	2.9E-03	4.3E-02
Radioactive Waste Disposed		8.0E-16	1.7E-31	1.4E-17
Components For Reuse		0.0E+00	0.0E+00	0.0E+00
Material For Recycling		0.42	9.3E-04	3.2E-02
Material For Energy Recovery		2.7E-02	3.4E-07	2.1E-04
Exported Energy Electrical		0.0E+00	0.0E+00	0.0E+00
Exported Energy Thermal		0.0E+00	0.0E+00	0.0E+00

Module Results Building Use and End-of-Life

Table 2 shows results for Building Use B1 to B7

Table 2 C1 to C4 Impact & Inventory Results/Functional Unit

Result	B1	B2	В3	B4	B5	В6	В7
GWP ff	0.0E+00	0.62	0.21	0.0E+00	0.0E+00	0.0E+00	0.0E+00
GWP bio	0.0E+00						
GWP luluc	0.0E+00	7.3E-06	2.8E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
GWP total	0.0E+00	0.52	0.18	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ODP	0.0E+00	2.9E-09	7.4E-09	0.0E+00	0.0E+00	0.0E+00	0.0E+00
POCP	0.0E+00	3.3E-03	1.2E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00
AP	0.0E+00	1.4E-03	5.1E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
EP freshwater	0.0E+00	5.9E-07	2.2E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
EP marine	0.0E+00	2.4E-04	1.4E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
EP land	0.0E+00	1.8E-03	5.7E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ADP min	0.0E+00	2.9E-04	4.4E-05	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ADP ff	0.0E+00	0.53	0.21	0.0E+00	0.0E+00	0.0E+00	0.0E+00
WDP	0.0E+00	9.8E-03	2.8E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00
FW	0.0E+00	60	17	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	0.0E+00	0.0E+00	2.5E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00
RSF	0.0E+00						
PERM	0.0E+00	1.00	0.02	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PERE	0.0E+00	0.6	0.60	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PERT	0.0E+00	1.6	0.62	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NRSF	0.0E+00	0.04	0.01	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PENRM	0.0E+00	1.6	1.5	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PENRE	0.0E+00	7.7	2.9	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PENRT	0.0E+00	9.3	4.4	0.0E+00	0.0E+00	0.0E+00	0.0E+00
HWD	0.0E+00	9.1E-04	8.4E-04	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	0.0E+00	9.9E-02	4.7E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00
RWD	0.0E+00	2.5E-17	4.4E-17	0.0E+00	0.0E+00	0.0E+00	0.0E+00
CRU	0.0E+00						
MFR	0.0E+00	7.1E-02	2.2E-02	0.0E+00	0.0E+00	0.0E+00	0.0E+00
MER	0.0E+00	3.2E-05	1.4E-03	0.0E+00	0.0E+00	0.0E+00	0.0E+00
EEE	0.0E+00						
EET	0.0E+00						

Module Results Building Use and End-of-Life

Table 3 shows results for Building End of Life C1 to C4.

Table 3 C1 to C4 Impact & Inventory Results/Functional Unit

Table 3 CT to C4 IIII	pact & inventory Res	uits/Functional Unit		
Result	C1	C2	C3	C4
GWP ff	1.8E-03	6.2E-03	0.0E+00	7.1E-03
GWP bio	0.0E+00	0.0E+00	0.0E+00	0.0E+00
GWP luluc	2.1E-08	1.4E-09	0.0E+00	3.5E-03
GWP total	1.6E-03	6.2E-03	0.0E+00	1.1E-02
ODP	6.8E-12	1.1E-13	0.0E+00	7.1E-08
POCP	9.6E-06	6.0E-05	0.0E+00	6.1E-04
AP	4.1E-06	5.1E-06	0.0E+00	1.1E-03
EP freshwater	1.4E-09	3.1E-10	0.0E+00	3.1E-04
EP marine	7.3E-07	9.5E-07	0.0E+00	2.6E-05
EP land	5.4E-06	3.4E-06	0.0E+00	4.2E-05
ADP min	1.5E-03	7.5E-03	0.0E+00	0.0E+00
ADP ff	6.6E-07	4.0E-06	0.0E+00	0.0E+00
WDP	2.3E-05	1.4E-06	0.0E+00	0.0E+00
FW	0.14	8.7E-03	0.0E+00	0.0E+00
SM	0.0E+00	2.2E-06	0.0E+00	0.0E+00
RSF	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PERM	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PERE	2.3E-03	1.6E-03	0.0E+00	0.0E+00
PERT	1.6E-03	2.1E-04	0.0E+00	0.0E+00
NRSF	4.0E-03	1.8E-03	0.0E+00	0.0E+00
PENRM	8.9E-05	4.8E-04	0.0E+00	0.0E+00
PENRE	3.7E-03	3.7E-02	0.0E+00	0.0E+00
PENRT	2.2E-02	6.4E-02	0.0E+00	0.0E+00
HWD	2.1E-06	1.2E-05	0.0E+00	0.0E+00
NHWD	2.3E-04	9.7E-05	0.0E+00	0.0E+00
RWD	5.7E-20	8.5E-32	0.0E+00	0.0E+00
CRU	0.0E+00	0.0E+00	0.0E+00	0.0E+00
MFR	1.7E-04	4.6E-06	0.0E+00	0.0E+00
MER	7.5E-08	1.5E-07	0.0E+00	0.0E+00
EEE	0.0E+00	0.0E+00	0.0E+00	0.0E+00
EET	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Module A1 to D4 Results Beyond System Boundaries

Table 4 shows results for Beyond System Boundaries phases D1 to D4.

Table 4 C1 to D4 Impact & Inventory Results/Functional Unit

		D2	D2	D4
Result	D1	D2	D3 0.0E+00	D4
GWP ff	0.0E+00	0.0E+00		0.0E+00
GWP bio	0.36	0.0E+00	0.0E+00	0.0E+00
GWP luluc	0.0E+00	0.0E+00	0.0E+00	0.0E+00
GWP total	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ODP	0.0E+00	0.0E+00	0.0E+00	0.0E+00
POCP	0.0E+00	0.0E+00	0.0E+00	0.0E+00
AP	0.0E+00	0.0E+00	0.0E+00	0.0E+00
EP freshwater	0.0E+00	0.0E+00	0.0E+00	0.0E+00
EP marine	0.0E+00	0.0E+00	0.0E+00	0.0E+00
EP land	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ADP min	0.0E+00	0.0E+00	0.0E+00	0.0E+00
ADP ff	0.0E+00	0.0E+00	0.0E+00	0.0E+00
WDP	0.0E+00	0.0E+00	0.0E+00	0.0E+00
FW	0.0E+00	0.0E+00	0.0E+00	0.0E+00
SM	0.0E+00	0.0E+00	0.0E+00	0.0E+00
RSF	0.0E+00	0.0E+00	0.0E+00	0.0E+00
PERM	0.22	0.0E+00	0.0E+00	0.0E+00
PERE	6.8	0.0E+00	0.0E+00	0.0E+00
PERT	6.6	0.0E+00	0.0E+00	0.0E+00
NRSF	0.19	0.0E+00	0.0E+00	0.0E+00
PENRM	14	0.0E+00	0.0E+00	0.0E+00
PENRE	28	0.0E+00	0.0E+00	0.0E+00
PENRT	42	0.0E+00	0.0E+00	0.0E+00
HWD	0.0E+00	0.0E+00	0.0E+00	0.0E+00
NHWD	0.0E+00	0.0E+00	0.0E+00	0.0E+00
RWD	0.0E+00	0.0E+00	0.0E+00	0.0E+00
CRU	0.0E+00	0.0E+00	0.0E+00	0.0E+00
MFR	0.0E+00	0.0E+00	0.0E+00	0.0E+00
MER	0.0E+00	0.0E+00	0.0E+00	0.0E+00
EEE	0.0E+00	0.0E+00	0.0E+00	0.0E+00
EET	0.0E+00	0.0E+00	0.0E+00	0.0E+00

Global GreenTag^{CertTM} EPD Program EN 15804+A2, ISO 14025 ISO 21930 Environmental Product Declaration

Homogenous Palettone PUR EPD PLF:HP5:2022

Interpretation of Results

This interpretation discusses product results cradle to grave.

Components embodied 98% EE and 99% GWP mostly from supply chain fossil fuel.

Per kg dispatched product packaging gross embodied energy (EE):

- input share was 2% and
- Global Warming (GWP) emissions share was 1%.

Except for lowest impact minerals, component mass share correlated with gross EE and GWP/kg product.

On average, the Whitefield factory manufacturing used:

- only 17% gross energy with
- 13% being electrical and
- 4% gas fuel with
- GWP emissions 12% and 5% shares respectively.

While factory power supply is predominantly renewable all fuel was transported and most wood scrap fuel was shipped from North America.

Overall, of the gross product input 85% EE was fossil fuelled with 15% from renewable sources.

On average 74% was fossil fuelled and 26% was feedstock that is recoverable at end of product life via material re-use or transformation to energy.

Of the gross energy, on average:

- 59% EE was burnt as fossil fuels,
- 26% retained in fossil feedstock,
- 14% used as renewable energy and
- 1% retained in renewable feedstock.

Of the gross primary non-renewable energy:

- 69% was used as fuel and
- 31% was retained in feedstock.

Of the gross renewable energy

- 95% was used and
- 5% retained in feedstock material.

Module D Beyond System Boundary results show typical D1 Reuse of 60% of least-worn product in low traffic areas for 40 more years.

This reduces all impacts >40%/kg for a 60-year building life with the same new product to 40% of area in high traffic areas.

Results for phases A4 to C4 are significant and these remain unchanged for replacement over the building life.

References

- [1] EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products.
- [2] GreenTag[™] 2021 EPD Program, Product Category Rules https://www.globalgreentag.com/epd-program.html.
- [3] ISO 14025:2010 Environmental labels and declarations Type III environmental declarations Principles and procedures.
- [4] ISO14044:2006 Environmental management Life cycle assessment Requirements and guidelines.
- [5] ISO 15686-2:2012 Buildings and constructed assets Service life planning Part 2: Service life prediction procedures.
- [6] ISO 15686-8:2008 Buildings and constructed assets Service-life planning Part 8: Reference service life and service-life estimation.
- [7] IPCC 2013, Global Warming Potential 100-year, IPCC Fifth Assessment Report Climate Change.
- [8] WMO 2014, Ozone Depletion Potentials for Steady-state, Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Report No. 55, 2014.
- [9] Van Zelm, R., Huijbregts, M., Hollander, H., Jaarsveld, H., Sauter, F., Struijs, J., Wijnen, H., Van de meent, D. 2008, European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment, J O Atmospheric Environment 42(3):441-453, as applied in ReCiPe LOTOS-EUROS. DOI: 10.1016/j.atmosenv.2007.09.072
- [10] Seppälä, J., Posch, M., Johansson, M. and Hettelingh, J-P. 2006 Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator, T Int J O LCA 11(6):403-416 Nov 2006 DOI:10.1065/lca2005.06.215
- [11] Posch, M., Seppälä, J., Hettelingh, J-P., and Johansson, M., (2008) The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA, Sept 2008, I J of Life Cycle Assessment 13(6):477-486., DOI:10.1007/s11367-008-0025-9
- [12] Struijs, J., Beusen, A., van Jaarsveld, H. & Huijbregts, M.A.J. (2009b). Aquatic Eutrophication. Ch 6 in: Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J., Van Zelm, R. (2009). ReCiPe 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation factors, 1st Ed.
- [13] CML-IA V4.1 LCA methodology, 2002, October 2012, CML University of Leiden, Netherlands.
- [14] Guinée et al., 2002, and van Oers et al., 2002 CML LCA methodology 2002a, Institute of Environmental Sciences (CML), Faculty of Science, University of Leiden, Netherlands.
- [15] Boulay, A-M., Bare, J., Benini, L., Berger, M., Lathuilliere, M., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A., Ridoutt, B., Oki, T., Worbe, S., Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). I J of LCA. 23. 1-11. 10.1007/s11367-017-1333-8.

Bibliography

Ciroth A., Hildenbrand J., Zamagni A. & Foster C., 2015, Data Review Criteria. Annex A: LCI Dataset Review Criteria, 10.13140/RG.2.1.2383.4485 UN EP Life Cycle Initiative

EN ISO 14024:2000, Environmental labels and declarations - Type I environmental labelling -Principles and procedures (ISO 14024:1999).

EN ISO 14040:2006, Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006).

EN 15643-1:2010, Sustainability of construction works - Sustainability assessment of buildings - Part 1: General framework.

EN 15643-2, Sustainability of construction works - Assessment of buildings - Part 2: Framework for the assessment of environmental performance.

EN 16449, Wood and wood-based products - Calculation of the biogenic carbon content of wood and conversion to carbon dioxide.

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products.

ISO 21931-1:2010, Sustainability in building construction - Framework for methods of assessment of the environmental performance of construction works - Part 1: Buildings.